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ABSTRACT 

Several different unsupervised anomaly detection algorithms have been applied to Space Shuttle 
Main Engine (SSME) data to serve the purpose of developing a comprehensive suite of Integrated 
Systems Health Management (ISHM) tools. As the theoretical bases for these methods vary considerably, 
it is reasonable to conjecture that the resulting anomalies detected by them may differ quite significantly 
as well. As such, it would be useful to apply a common metric with which to compare the results. 
However, for such a quantitative analysis to be statistically significant, a sufficient number of examples of 
both nominally categorized and anomalous data must be available.  

Due to the lack of sufficient examples of anomalous data, use of any statistics that rely upon a 
statistically significant sample of anomalous data is infeasible. Therefore, the main focus of this paper will 
be to compare actual examples of anomalies detected by the algorithms via the sensors in which they 
appear, as well the times at which they appear. We find that there is enough overlap in detection of the 
anomalies among all of the different algorithms tested in order for them to corroborate the severity of 
these anomalies. In certain cases, the severity of these anomalies is supported by their categorization as 
failures by experts, with realistic physical explanations. For those anomalies that can not be corroborated 
by at least one other method, this overlap says less about the severity of the anomaly, and more about 
the technical nuances of the algorithms, which will also be discussed. 

INTRODUCTION 

A comprehensive suite of failure detection algorithms can be used to aid in the early detection of 
spacecraft propulsion engine anomalies and potential failures during operation. The study provided in this 
paper reviews algorithms that have been applied to SSME data as a testbed platform, in anticipation of 
applying them to future spacecraft propulsion systems such as the Ares I crew launch vehicle, and Ares 
V, the heavy lift cargo launch vehicle. It is well known by algorithm designers that having more than a 
single means to detect a failure aids in corroboration and also builds in redundancy. Several architectures 
have been developed that support this very concept, with one prime example by Park et al.1 in which 
SSME data was also used as the target for building the model.  As such, it is very possible that a 
preliminary architecture consisting of the algorithms applied to the SSME data presented in this study 
may be developed to support engine anomaly detection for future spacecraft propulsion systems. An 
alternative approach to anomaly detection on the SSME was to analyze the optical spectrum of the SSME 
exhaust plume 12.  This approach relied on a supervised learning analysis of a high resolution spectrum of 
the SSME exhaust by determining the concentrations of chemical components such as chromium and 
hydroxide and correlating them with engine parameters such as the rated power level and the mixture 
ratio. 



 

The methods that we will study in the paper all have a similar modeling paradigm in common. All 
models are data–driven and unsupervised, meaning that a nominal representation is generated purely 
from the data, without any portion of the model that integrates rules, component level or first principles 
physics-based representation of the subject platform. From a statistical standpoint, due to limited 
examples of failures, the supervised or semi-supervised paradigm for machine learning will not produce 
an acceptable model. Both of these methods require a modest number of labeled examples of failures of 
anomalies. As such, we apply the unsupervised paradigm for all of the methods to be used, in which 
models are trained on data that represent nominal operation only. Other methods of anomaly detection, 
based on the sequential characteristics of events in a multivariate time series are given elsewhere 13, 14, 15. 
In each of the following subsections, brief descriptions and relevant references are provided for each of 
the methods to be applied. 

ORCA 

Orca is a software tool that uses a nearest neighbor based approach to outlier detection which is 
based upon the Euclidean distance metric. It uses a modified pruning rule that allows for increased 
computational efficiency, running in near linear time. More information on this algorithm and some of its 
applications can be found in Bay and Schwabacher2, and Schwabacher3. This algorithm outputs a total 
score which represents the average distance to the nearest k neighbors in the multi-dimensional feature 
space containing all of the variables. It also outputs the contribution of each variable to this score in order 
to show which variables cause each outlier to be classified as such. 

IMS (INDUCTIVE MONITORING SYSTEM) 

IMS, the Inductive Monitoring System, is a software tool that performs outlier detection by 
learning the bounds of clusters in multi-dimensional feature space for nominal operation during the model 
training phase. During the monitoring phase, any points falling outside of hypercubes defined and stored 
in a system behavior cluster database that represent the bounds of nominal operation are considered 
outliers. This algorithm outputs a score that represents the Euclidean distance between the monitored 
point and the nearest cluster. More information on this algorithm can be found in Iverson4. 

GRITBOT 

GritBot is a commercially available data mining software tool that performs anomaly detection 
using a decision tree-based approach. The resulting rules for categorization of potential anomalies are 
presented individually, at particular times. As such, there is not an overall score provided, or even a 
parameter-based score for an entire time series. Rather, anomalies are listed in ranked order according 
to their statistical significance. Each identified anomaly presents the time at which the anomaly appears, 
the parameter-based decision rule listed with corresponding relevant statistics, and the respective 
parameter values of the identified anomaly. 

GMM (GAUSSIAN MIXTURE MODEL) 

The Gaussian mixture model is derived from Bayesian statistics in the sense that it can be easily 
represented within the probabilistic graphical modeling paradigm (also sometimes referred to as Bayesian 
networks). An example of a graphical model representing the Gaussian mixture model is presented in Fig. 
1.  

Figure 1: Graphical Model Representation of GMM 



 

The shaded nodes represent the observed continuous-valued data, yk at the time instant k. The 
unshaded nodes, qk, represent M unobserved discrete variables whose conditional probability can be 
computed using the observed data. The parameters that constitute θ can be expressed as a function of 
these conditional probabilities and as a function of other similarly formed estimates for each of the M 
Gaussian mixtures, including mixture weights (αi), means (µi) and covariance matrices (Σi). An iterative 
learning process is implemented via the EM algorithm to converge at values for these estimates. One 
important assumption is implicitly made about the data using this modeling paradigm, which is that all N 
observations are temporally independent. This same assumption is also tacitly implied in the previous 
methods discussed.  

There are several variants of the Gaussian mixture model that can be investigated in this 
particular study. They include variants based on the choice of correlation among parameters via 
constraints on the covariance matrix for a multivariate GMM in which all sensors form a single feature 
vector. Other variants include the application of various data reduction techniques for which a univariate 
GMM is trained, or a univariate GMM that is trained on each individual sensor (parameter). In the latter 
case, either a single alarm system for all sensors or multiple alarm systems for each sensor can be 
designed for these univariate GMM's. Training multiple alarm systems for individual univariate GMM’s per 
parameter value denies the ability to take advantage of correlations among different sensors, however, it 
inherently allows for the ability of anomalies to be isolated or localized. The design of these alarm 
systems is performed by selecting a threshold based upon the log-likelihood function value of the 
distribution. An alarm is triggered upon evaluation of the log-likelihood value at yk exceeding this 
predefined threshold. The negative log-likelihood value also serves as a scoring metric for all time 
instants. A previous study5 provides a more thorough discussion on the theory of designing the alarm 
systems and model development in detail. Exploration of all of the variants discussed here is also 
provided in 5, using SSME data as the basis of the study. As such, for comparative purposes we will 
investigate only the variant that provides the ability to localize anomalies to a particular sensor here. 

LDS (LINEAR DYNAMIC SYSTEM) 

The Linear Dynamic System has roots in various research communities, including machine 
learning and control theory. Unlike the previous general purpose anomaly detection methods, we attempt 
to address a very application-specific anomaly detection problem by appealing to the use of the Linear 
Dynamic System from both research perspectives. Specifically, we use the SSME throttle control system 
error (Fig. 2) as the basis of observations to train a model that can also be expressed in the probabilistic 
graphical modeling framework (Fig. 3), a DBN (Dynamic Bayes’ network) in this case.  

 

 

 



 

Figure 2: Throttle Control System Error, e(t) 

 

Figure 3: DBN Representation of a Linear Dynamic System 

 

Also unlike the previous cases, the observations are serially correlated, and 2nd order dynamics 
are assumed. However, the model training and alarm system design procedure are identical to the details 
provided for the GMM.  As such, again the negative log-likelihood value may serve as a scoring metric for 
all time instants. The study cited previously5 also uses this modeling paradigm as a case for study. More 
thorough discussion on the details of blending both machine learning and control theory to serve the 
purpose of anomaly detection is provided there. 

ONE-CLASS SUPPORT VECTOR MACHINE 

The one-class support vector machine is a very specific instance of a support vector machine 
which is geared for anomaly detection. The generic support vector machine (SVM) can be used to 
classify data in multiple dimensions by finding an appropriate decision boundary. Unlike neural networks, 
the support vector machine finds the boundaries that provide the maximum margin between different 
classes of data. Additionally, using the support vector machine one can map data from a lower 
dimensional space that is not linearly separable to a higher (even infinite-dimensional) space where the 
data are linearly separable by a hyperplane. This is performed by using what is commonly known in 
machine learning as the “kernel trick,” when using SVM’s. A kernel function is chosen to map the data 
from the lower-dimensional space to the higher-dimensional space. It can be chosen arbitrarily so as to 
best suit the data and at the same time reduce the computational burden involved with generating the 
mapped values by direct evaluation. “Support vectors” correspond to those points that lie along the 
margin or closest to it. The maximum margin between classes is found by solving a quadratic optimization 
problem.  

The one-class SVM differs from the generic version of the SVM in that the resulting quadratic 
optimization problem includes an allowance for a certain small predefined percentage of outliers, making 
it suitable for anomaly detection. These outliers lie between the origin and the optimal separating 
hyperplane. All the remaining data fall on the opposite side of the optimal separating hyperplane, 
belonging to a single, nominal class, hence the terminology “one-class” SVM. The SVM outputs a score 
that represents the distance from the data point being tested to the optimal hyperplane. Positive values 
for the one-class SVM output represent normal behavior (with higher values representing greater 



normality) and negative values represent abnormal behavior (with lower values representing greater 
abnormality). More technical details on the one-class SVM are available in Das et al. 6 and Cohen et al.7. 

The one-class SVM differs from the other methods discussed in this paper because it determines 
whether or not a point is an outlier based on the distance of the point to a separating hyperplane in a 
feature space induced by a kernel operator, whereas most of the other methods rely on an analysis of the 
data in the original data space.  For the one-class SVM, a single hyperplane separates the nominal data 
from the origin.  Thus, for a system which undergoes nominal mode changes during its operation, all such 
changes will be characterized as nominal with a single hyperplane.  Orca and IMS, on the other hand, 
characterize the anomalousness of a point based on local characteristics within the data space.  This 
quality can make those algorithms more robust to significant mode changes compared with the one-class 
SVM. 

RESULTS AND DISCUSSION 

Recall the purpose of this paper, which is to perform a comparative analysis among the different 
methods applied to the same SSME dataset. Table 1 illustrates the data used for both training and 
validation. Portions of the data representing startup, shutdown, and major throttling transients have been 
eliminated in order to prevent spurious false alarms that all algorithms are susceptible to during validation.  

 

Training Validation 
Data Sources 

Nominal Nominal Potential Anomalies 

STS-77 (#1) STS-103 (#2) STS-77 (#2) 

STS-78 (#1) STS-103 (#3) STS-91 (#1) 

STS-78 (#2) STS-106 (#1) STS-93 (#1) 
Flight Data 

STS-78 (#3) STS-106 (#2) STS-93 (#3) 

A10851 A10852 A10853 
Test Stand Data 

A20726 A20750 A20619 

Table 1: SSME training and validation datasets 

 

 In adherence with the unsupervised machine learning paradigm, all of the six training data files 
are categorized as nominal. Both flight data and test stand data are represented, adding to the richness 
and heterogeneity of the resulting models built upon this dataset, in part due to the variety of operational 
conditions experienced throughout both flight and testing runs. The validation data is split into two sets of 
six, one set that represents nominal data, and the other that represents potentially anomalous data. The 
nominally categorized data has for the most part been found or thought to be free of any significant 
anomalies. However, in some instances benign anomalies may appear in the validation of nominally 
categorized data where there was no prior suspicion of them. The potentially anomalous data has been 
categorized as such by experts in the case of the test stand data, where in the other in-flight cases there 
have been documented failures or anomalies found by other algorithms in independent analyses not 
discussed here, i.e. Bickford8. A subjective evaluation for the relative severity of the potentially anomalous 
data is provided in Table 2 below. 

 



Table 2: Characterization of Failures 

 

The functional categorization is meant to provide context for the type of sensor in which the 
failure occurs. Controller data includes sensor measurements such as valve positions, pressures, 
temperatures, and fuel flow rates that are fed into the engine controller. Vibration data are primarily 
accelerometer measurements used to assess the structural integrity of the engine. We now present the 
results for all algorithms for validation examples shown in Table 1, including the potential anomalies 
shown in Table 2.  Recall that the aim is to compare actual examples of anomalies detected by all 
algorithms presented. Of these techniques, only Orca, GritBot, and the GMM method will provide 
information pertaining to the sensors in which the potential anomalies appear. All methods provide the 
times at which the anomalies appear, conditioned on the fact that a specific threshold is used for the 
scoring metric. We can also determine if there is enough overlap in detection of the anomalies among all 
of the different algorithms tested in order for them to corroborate the severity of these anomalies as 
presented in Table 2.  

Binary classification of the validation data will be performed by finding the threshold that splits the 
anomalous and nominally categorized files evenly. Our rationale for using this rule is due to there being 
exactly six examples of both nominal and anomalous validation data runs. Traditionally, one would chose 
thresholds a priori based upon the training data set and apply them to the validation data set. However, 
choosing the thresholds as we’ve done here loses no experimental objectivity due to the consistent 
nature of its application to each algorithm. With the exception of the GMM method and GritBot, at least 
one threshold exceedance by the score during the run is required to classify a file as anomalous. For the 
GMM method, at least one threshold exceedance by the score of an offending sensor during the run is 
required to classify a file as anomalous. As for GritBot, recall that there is no scoring metric, therefore, 
only the times of the anomalies will be shown, and the sensor in which they present. GritBot lists its 
anomalies in ranked order, and as such the top anomalies corresponding to the first six unique tests were 
chosen for display. 

NOMINAL VALIDATION TRIALS 

Our first example is nominally categorized SSME engine #2 for flight STS-103, with the results 
shown in Figure 4.  

Failure Data Failure Type Functional 
Categorization 

Severity 
 

STS-77 (#2) 
Anomalous Spike  in 
Sensor Reading Controller Mild 

STS-91 (#1) Sensor Failure Controller Mild 

STS-93 (#1) Controller Failure Controller Moderate 

STS-93 (#3) 
Fuel Leak and 
Controller Failure 

Controller Moderate to Severe 

A20619 Knife Edge Seal Crack Vibration Moderate to Severe 

A10853 Turbine Blade Failure Vibration Severe 



 

Figure 4: Anomaly Detection Comparison for Validation file STS-103, Engine #2 

 

Figure 4 illustrates the scored values for all anomaly detection algorithms. Absolute scores are 
not provided, to allow for ease of display. Rather, the scores are all scaled to 100% based upon the 
maximum score encountered during the test, and shifted/stacked accordingly. In some cases, the 
negative of recorded scores are scaled and shifted (specifically, the GMM and LDS methods use the 
negative log-likelihood, and the negative of the SVM score is used). This is done so that all scores have a 
common reference, such that larger values for all algorithms shown on the plot correspond to anomalous 
behavior. The green line represents the percentage of maximum throttle encountered during the test, 
which is an apparent driver for many of the controller-based sensor readings that the SSME is outfitted 
with. As such, the score is often biased by the throttle command as well. This is evident for the scores 
shown in Figure 4. The green line is not scaled to 100% and stacked, but rather scaled to 600% and 
superimposed on the other curves to more clearly illustrate the magnitude of the throttling transients. On 
the legend, all alarms are indicated by a red cross. Furthermore, there are some parenthetical remarks for 
Max Throttle, Orca, and the GMM method. Because there is no score for GritBot, any anomalies detected 
using this method will be identified separately using a magenta asterisk. Otherwise, if there are no 
anomalies detected by GritBot, its nominal classification will be shown parenthetically with Max Throttle 
on the legend. Since Orca, GritBot, and the GMM method all have the ability to isolate anomalies to a 
particular sensor, the main contributing sensor will be shown parenthetically on the legend. This is true 
even in the case that the test is nominal for Orca, although for the GMM method a sensor will be selected 
at random in this case. The only algorithm that classifies the test shown in Fig. 4 as anomalous is Orca, 
which has its first anomalous detection event around 79 seconds into the test. No significant operational 
event occurs at this time, and as such we can conclude that this is a false positive on Orca’s part, as 
none of the remaining algorithms can corroborate an anomaly.  

 



The second example is illustrated in Figure 5, which represents a nominally categorized SSME 
engine, #3, for the same flight as shown in Figure 4, STS-103. 

 

 

Figure 5: Anomaly Detection Comparison for Validation file STS-103, Engine #3 

 

Here we see that the throttle profile is identical to the previous case, as expected since it is for the 
same flight. However, the scores for this engine are quite different. All algorithms with the exception of 
Orca classify this run as anomalous. Although the run was classified as nominal, it was found in a 
previous study8 that this particular run experienced what was termed a “max noise failure.” These failures 
were reported at times 38.1 sec and 72.74 sec for two high pressure fuel turbine discharge temperature 
sensors, respectively. The failure occurs due to rapid oscillations or repeated unexplained fluctuations. 
However, these particular sensors were not included as part of our analysis, and as such accounted for 
the nominal categorization of STS-103 #3. It is possible that the max noise failure was picked up in the 
sensors that were included in our analysis here, manifesting themselves in the apparent fluctuation 
shown in the scores in Fig. 5. This can be illustrated by the measured fuel flow sensor that the GMM 
method has isolated as anomalous. It is also noteworthy that the GMM method is the first to identify the 
max noise failure. Orca again is the one algorithm that votes against all others, this time as a false 
negative, after revising ground truth. The MFV Command Value shown parenthetically on the legend for 
Orca indicates that it is the largest contributing factor to the score. 

The third nominal example is a different flight, STS-106, engine #1. In this case, GritBot is the 
only algorithm that breaks ranks with the others, finding an anomaly in the hydraulic system at 368.22 into 
the flight. This is a false positive, as all other algorithms correctly categorize it as a nominal run. The 
fourth nominal example is for the same flight, STS-106, but for a different engine, #2, and the scores are 
shown in Fig. 6 below. Although this a nominally classified run, three of six algorithms pick out anomalous 
behavior, making a majority voting logic scheme inconclusive. For the GMM method, the selected 



threshold results in all points in time being picked out as anomalous for the MFV actuator position. IMS 
and LDS also show several times where the scores exceed the selected thresholds, indicated by the 
alarms shown, albeit to a lesser extent than for the GMM method. It may be possible that if the selected 
thresholds were incrementally higher, IMS and LDS would have yielded nominal categorizations for this 
run, and GMM would have provided the only anomalous classification. This would make the GMM 
method’s classification a false positive, since the other algorithmic techniques don’t corroborate this 
anomaly. However, due to the nature of the severity of the anomaly for the particular sensor identified by 
the GMM method, it may be worth further investigation. 

 

 

Figure 6: Anomaly Detection Comparison for Validation file STS-106, Engine #2 

 

The final two nominal validation trials are based upon test stand data, the first of which is A10852. 
As illustrated in Figure 7, all algorithms applied to this test with the exception of Orca and GritBot classify 
this test as anomalous. The area of interest occurs from approximately 210 to 240 sec. For this particular 
test, during a period of nominal steady-state operation, there is a significant excursion in the scores of the 
remaining algorithms. As it turns out, a planned mixture ratio change that deviates from what is normally 
encountered was executed precisely during these time periods. This is further substantiated by the fact 
the GMM method indicates this as the only sensor in which a significant anomaly appears. As such, it 
certainly stands to reason that this operational idiosyncrasy would present as an anomaly in the 
remaining algorithms even though it was originally categorized as nominal. This anomaly also appeared 
in analysis for a completely independent study9 that used an entropy-based method. With the exception of 
Orca and GritBot that provide a false negative report, all algorithms do report this test as anomalous. It is 
possible that the threshold was set too high for these methods to pick up the anomaly. It is also 
noteworthy that both the GMM and LDS methods identify the anomaly first, with the LDS method resulting 
in the earlier report of the anomaly. The final nominal test is for A20750, for which all algorithms with the 
exception of the GMM method categorize it as nominal. In this case the GMM method reports the 



anomaly to appear in the MFV command value sensor. This report is clearly a false positive, and may be 
due to the threshold value being set too low for this method.  

 

 

Figure 7: Anomaly Detection Comparison for Validation file A10852 

ANOMALOUS VALIDATION TRIALS 

Of the tests whose ground truth classification was anomalous, STS-77 engine #2 experienced an 
anomaly which was subjectively categorized to have the least severity, with it being an anomalous spike 
identified by analysis in a previously cited study8. It was identified in a high pressure fuel pump discharge 
pressure sensor at 74.42 seconds. However, all of the algorithms categorize the validation trial as 
nominal. This result may be due to the fact that the thresholds for all methods were set too high in order 
to pick out this very mild anomaly that had not been validated by experts. The next anomalous test is 
listed in Table 2, for flight STS-91 engine #1, and represents a sensor failure that can also subjectively be 
categorized as mild or benign; however its severity is of greater importance than the anomalous spike 
from the previous example. In this case, Orca is the only algorithm that correctly categorizes the run as 
anomalous, even though the first detection occurs at 77.8 sec, and the largest contributing factor is the 
MFV command value. In contrast, ground truth indicates that the sensor failure occurred at 32.76 
seconds, for the main combustion chamber pressure sensor. 

The next two failures listed in Table 2 occurred on the same flight, STS-93, for both engines #1 
and #3. Engine #1 experienced a controller failure due to an electrical spike on the main bus that resulted 
in a power transient onboard the orbiter. Engine #3 experienced the same, in addition to a hydrogen fuel 
leak caused by a ruptured cooling line. These details are publicly available on-line,11 with additional 
supporting evidence provided by Bickford8. The controller failure is subjectively categorized to have only 
moderate severity due to the fact that back up controllers were automatically put into service. However, 
the fuel leak is potentially a major threat to engine operation, and as such is categorized as severe. For 



Engine #1, all algorithms with the exception of the LDS method recognized the failure using the chosen 
thresholds, and categorized it as anomalous. The first indication of the failure was reported by the GMM 
method at time 12.64 sec, almost 3 sec prior to GritBot’s first indication of an anomaly, and over 12 sec 
prior to the remaining algorithms. The reason why the LDS incorrectly labeled this as a nominal trial (i.e., 
yielded a false negative) is due to the fact that the signal being monitored by this method is the control 
system error. Since the failure was a total controller failure, both the commanded and actual sensor 
values zeroed out. As such, the control system error remained at zero, and resulted in no apparent 
evidence of an anomaly. 

For the more severe failure in engine #3, all six algorithms correctly identified the anomaly, the 
first of which was the GMM method at 11.84 sec, followed by the LDS method at 17.44 sec. Both the 
GMM method and Orca isolated the main combustion chamber discharge temperature as a sensor that 
provides a significant contributing factor to the anomaly. Orca first identified the anomaly at 23.44 sec, as 
did IMS and the SVM method. However GritBot did not identify the anomaly until 176 sec, and it is for a 
different sensor, the fuel preburner chamber pressure, followed by two other anomalies identified at 299 
sec and 311 sec identified for the hydraulic system pressure sensor. 

The final two examples of failures come from test stand trials. The first, test A20619, represents a 
material failure due to a knife edge seal crack in the high pressure oxidizer turbo pump. Without high 
frequency data and an algorithmic technique suited to analysis in the frequency domain, this type of 
failure may be overlooked by straightforward time series analysis on data that has a rather modest 
sampling rate. However, as shown in Fig. 8, we see that four out of six of the algorithmic techniques 
applied yield an anomalous classification. At least two of these classifications (particularly the LDS and 
SVM methods) are unrelated to the knife edge seal crack, and more likely related to the transient in the 
throttle that occurs just after 150 sec. Of course, we only train and validate for periods of steady-state 
operation, however, it is possible for some transients to have a more lasting effect than others. Orca and 
GritBot detect anomalies prior to this transient, localizing the MFV command value and the CCV actuator 
position sensors as the main contributing factors. These sensors do not necessarily have a direct bearing 
on the knife edge seal crack. Therefore, even though four sensors positively and correctly identified this 
test as anomalous, we cannot conclusively recommend a correct or false positive rating. 

Finally, there has been a well documented10 and researched failure for test A10853. For this test, 
a high pressure turbo pump blade failure occurred, and its onset at 130 sec can be readily identified via 
the composite high pressure fuel pump accelerometer for frequencies in the 50 – 800 Hz range, located 
at 22.5 degrees radially. Figure 9 illustrates the votes of all algorithms applied to the test data for this run. 
As shown, all algorithms with the exception of the GMM method correctly classify it as anomalous. In this 
case, the threshold set for GMM method is too high, and as such yields a false negative. The threshold 
for the other algorithms is conceivably set too high as well, due to their times of detection occurring after 
the actual ground truth time of onset for the anomaly. 

The offending sensor is known (the composite high pressure fuel pump accelerometer), so for 
illustrative purposes the GMM score is shown for this sensor. Orca is the first algorithm to detect an 
anomalous condition, well in advance of the actual onset of the failure at 20.66 sec, followed by the LDS 
method which identifies an anomalous condition just fractions of a second after the onset of the failure. 
Both GritBot and Orca pick out the measured fuel flow and the MFV command value sensors as the main 
contributing factors. GritBot also identifies additional sensors in which anomalies occur, which are the 
hydraulic system and controller internal pressures. However, none of these represent accelerometer 
measurements, or specifically the offending composite HPFP accelerometer; therefore isolation of the 
anomalies to these sensors is dubious. 



 

Figure 8: Anomaly Detection Comparison for Validation file A20619 

 

Figure 9: Anomaly Detection Comparison for Validation file A10853 



SUMMARY AND CONCLUSIONS 

In this paper, we have provided a qualitative discussion pertaining to each of the validation trials 
presented in Table 2. For the most part, all algorithms have been fairly consistent in their corroboration of 
the classification of each trial. In only one case was there a tiebreaker required to make any conclusive 
statement about its final classification, flight STS-106, engine # 2. However, in general we can conclude 
that by changing the thresholds for various algorithms, their final binary classifications will vary 
accordingly. There may even potentially be some undiscovered anomalies not highlighted in this paper 
due to some thresholds being set too high. 

As a final comparative summary, we provide confusion matrices and tables on detection times for 
each algorithm in both the pre-experimental phase and the post-experimental phase after re-
classification. For the pre-experimental phase, a confusion matrix corresponding to perfect accuracy is as 
follows: 
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The elements of the confusion matrix have the following definitions: TP = number of true 
positives, TN = number of true negatives, FN = number of false negatives, FP = number of false positives. 
Here we’ve used Table 2 as the basis for ground truth to generate the following confusion matrices listed 
in order of decreasing accuracy and prediction times in Table 3. 
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Table 3: Time of Failures and Detections 

The quickest prediction times are shown in boldface, in Table 3. As an overall assessment, 
without accounting for the specific circumstances of each particular categorization, it appears that Orca 
classifies the most accurately, and has quicker prediction times. GritBot and the SVM method are tied for 
having the second best accuracy, and the GMM method has the second best prediction times for those 
that are accurately categorized according to the ground truth provided in Table 2. However, in the course 

Time of Failure 
Failure Data Failure Type 

Actual Orca GritBot SVM IMS LDS GMM 

STS-77 (#2) 
Anomalous 

Spike  in Sensor 
Reading 

74.42 
sec 

N/A N/A N/A N/A N/A N/A 

STS-91 (#1) Sensor Failure 32.76 
sec 

77.82 
sec N/A N/A N/A N/A N/A 

STS-93 (#1) 
Controller 

Failure 
11.38 
sec 

25.04 
sec 

15.44 
sec 

25.04 
sec 

25.04 
sec 

N/A 12.64 
sec 

STS-93 (#3) 
Fuel Leak and 

Controller 
Failure 

11.62 
sec 

23.44 
sec 

176.24 
sec 

23.44 
sec 

23.44 
sec 

17.44 
sec 

11.84 
sec 

A20619 
Knife Edge Seal 

Crack 
119 
sec 

20.66 
sec 

31.44 
sec 

183.44 
sec 

N/A 156.64 
sec 

N/A 

A10853 
Turbine Blade 

Failure 
130 
sec 

67.04 
sec 

295.84 
sec 

277.84 
sec 

553.05 
sec 

130.54 
sec 

N/A 



of our investigation, we have found that some re-classification of ground truth is necessary in order to 
best represent the new anomalies identified during analysis. As such, we may add A10852 and STS-103 
(#3) to the list of potential anomalies, resulting in the following updated confusion matrices, again listed in 
order of decreasing accuracy and revised prediction times in Table 4. Table 4 also provides an additional 
severity column, in order to aid in understanding the relative importance of all algorithms to identify the 
newly classified anomalies compared to more critical anomalies. Although both newly classified 
anomalies are categorized as having a mild severity, they should still be detectable by our algorithms. 

SVM: ⎥
⎦

⎤
⎢
⎣

⎡
42

06
, LDS: ⎥

⎦

⎤
⎢
⎣

⎡
33

15
, Orca: ⎥

⎦

⎤
⎢
⎣

⎡
33

15
, IMS: ⎥

⎦

⎤
⎢
⎣

⎡
33

15
, GritBot: ⎥

⎦

⎤
⎢
⎣

⎡
33

15
, GMM: ⎥

⎦

⎤
⎢
⎣

⎡
24

24
 

A confusion matrix corresponding to perfect accuracy is as follows: 
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⎡
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⎢
⎣

⎡
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Table 4: Revised Time of Failures and Detections 

Again, the revised quickest prediction times are shown in boldface. Now we see that the SVM 
method appears to have the highest accuracy, followed by all remaining algorithmic techniques tied for 
second, with the exception of the GMM method. Orca and the GMM method are tied for having the 
quickest prediction times, followed by the LDS method in second place. These revised results, however, 

Time of Failure Failure 
Data 

Failure 
Type 

Severity 
Actual Orca GritBot SVM IMS LDS GMM 

STS-77 
(#2) 

Anomalous 
Spike  in 
Sensor 
Reading 

Mild 
74.42 
sec N/A N/A N/A N/A N/A N/A 

STS-91 
(#1) 

Sensor 
Failure Mild 

32.76 
sec 

77.82 
sec N/A N/A N/A N/A N/A 

STS-93 
(#1) 

Controller 
Failure Moderate 

11.38 
sec 

25.04 
sec 

15.44 
sec 

25.04 
sec 

25.04 
sec 

N/A 12.64 
sec 

STS-93 
(#3) 

Fuel Leak 
and 

Controller 
Failure 

Moderate 
to 

Severe 

11.62 
sec 

23.44 
sec 

176.24 
sec 

23.44 
sec 

23.44 
sec 

17.44 
sec 

11.84 
sec 

A20619 
Knife Edge 
Seal Crack 

Moderate 
to 

Severe 

119 
sec 

20.66 
sec 

31.44 
sec 

183.44 
sec 

N/A 156.64 
sec 

N/A 

A10853 
Turbine 
Blade 
Failure 

Severe 

130 
sec 

67.04 
sec 

295.84 
sec 

277.84 
sec 

553.05 
sec 

130.54 
sec 

N/A 

STS-103 
(#3) 

Max Noise 
Failure 

Mild 
38.1, 
72.74 
sec 

N/A 253.84 
sec 

24.24 
sec 

24.24 
sec 

368.65 
sec 

12.24 
sec 

A10852 
Mixture 
Ratio 

Change 
Mild 

210 
sec 

N/A N/A 213.025 
sec 

213.425 
sec 

210.225 
sec 

211.425 
sec 



are still subject both to the specific circumstances of each particular categorization and the chosen 
thresholds. 

Independent of the results, all algorithmic methods have both advantages and disadvantages. For 
example, the IMS and SVM scores have a qualitative appearance that is very similar to the profile of the 
isolated GMM log-likelihood based sensor value score that represents an anomalous condition (i.e., see 
Figs. 7 and 9). This increases the accuracy of both methods. The GMM method, Orca, and GritBot all 
have the means to isolate the anomaly to a particular sensor. The LDS method is geared for detecting 
anomalies in control system error signals, and as such is very sensitive to parameters that influence it 
(i.e., unexpected mixture ratio changes).  

Some disadvantages include the inability of Orca and GritBot to correctly isolate anomalies, 
specifically when the classifications are correct and early. Another involves the inability of the GMM 
method to accurately detect anomalies based upon modestly set threshold values, although the same 
threshold value was used for all sensors. The SVM method and IMS have the ability to detect correctly, 
but their time to detection is insufficient. Finally, the LDS method cannot isolate sensors, and is best only 
when detecting anomalies that will present in the control system error. 

However, even with all of these disadvantages, there is great potential for development of an 
architecture and voting logic that leverages all of the advantages of the algorithms. There is a great deal 
of flexibility in selecting thresholds that best cater to each algorithm. The only reason this was not 
performed here was to provide for a measure of experimental objectivity. Furthermore, real-time 
implementation of these algorithms would require additional layers of corroboration since the root causes 
of anomalies are rarely known until a thorough investigation is performed. 

FUTURE WORK 

Future work that may extend the scope of what was presented here includes augmentation of the 
capabilities of the algorithms that do not have the ability to isolate anomalies to a particular sensor. Of 
course there are numerous technical endowments that can be implemented, for example, an additional 
layer of predictive capability can be added to the LDS method as alluded to in previous work.5 Finally, 
there is much work that can be performed in order to develop an architecture to support corroboration of 
potential anomalies, for the ultimate purpose of applying them to future spacecraft propulsion systems. 
Other key areas of future research include building ensemble models that combine the predictions of 
several anomaly detection algorithms, since each of them has a different performance characteristic.  We 
also plan to explore the development of one-class SVM algorithms which are more sensitive to mode 
changes in the data generating process. 
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